132 research outputs found

    Formation and Dissolution of Bacterial Colonies

    Full text link
    Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface. We use it to describe formation of multiple colonies with sizes consistent with experimental data and to discuss their dissolution.Comment: 3 figures, 1 Supplementary Materia

    Multisite transformation in Neisseria gonorrhoeae: insights on transformations mechanisms and new genetic modification protocols

    Get PDF
    Natural transformation, or the uptake of naked DNA from the external milieu by bacteria, holds a unique place in the history of biology. This is both the beginning of the realization of the correct chemical nature of genes and the first technical step to the molecular biology revolution that sees us today able to modify genomes almost at will. Yet the mechanistic understanding of bacterial transformation still presents many blind spots and many bacterial systems lag behind power horse model systems like Escherichia coli in terms of ease of genetic modification. Using Neisseria gonorrhoeae as a model system and using transformation with multiple DNA molecules, we tackle in this paper both some aspects of the mechanistic nature of bacterial transformation and the presentation of new molecular biology techniques for this organism. We show that similarly to what has been demonstrated in other naturally competent bacteria, Neisseria gonorrhoeae can incorporate, at the same time, different DNA molecules modifying DNA at different loci within its genome. In particular, co-transformation of a DNA molecule bearing an antibiotic selection cassette and another non-selected DNA piece can lead to the integration of both molecules in the genome while selecting only through the selective cassette at percentages above 70%. We also show that successive selections with two selection markers at the same genetic locus can drastically reduce the number of genetic markers needed to do multisite genetic modifications in Neisseria gonorrhoeae. Despite public health interest heightened with the recent rise in antibiotic resistance, the causative agent of gonorrhea still does not possess a plethora of molecular techniques. This paper will extend the techniques available to the Neisseria community while providing some insights into the mechanisms behind bacterial transformation in Neisseria gonorrhoeae. We are providing a suite of new techniques to quickly obtain modifications of genes and genomes in the Neisserial naturally competent bacteria

    Steered Molecular Dynamics Simulations of a Type IV Pilus Probe Initial Stages of a Force-Induced Conformational Transition

    Get PDF
    Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P) from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD) simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon stretching

    Cooperative Retraction of Bundled Type IV Pili Enables Nanonewton Force Generation

    Get PDF
    The causative agent of gonorrhea, Neisseria gonorrhoeae, bears retractable filamentous appendages called type IV pili (Tfp). Tfp are used by many pathogenic and nonpathogenic bacteria to carry out a number of vital functions, including DNA uptake, twitching motility (crawling over surfaces), and attachment to host cells. In N. gonorrhoeae, Tfp binding to epithelial cells and the mechanical forces associated with this binding stimulate signaling cascades and gene expression that enhance infection. Retraction of a single Tfp filament generates forces of 50–100 piconewtons, but nothing is known, thus far, on the retraction force ability of multiple Tfp filaments, even though each bacterium expresses multiple Tfp and multiple bacteria interact during infection. We designed a micropillar assay system to measure Tfp retraction forces. This system consists of an array of force sensors made of elastic pillars that allow quantification of retraction forces from adherent N. gonorrhoeae bacteria. Electron microscopy and fluorescence microscopy were used in combination with this novel assay to assess the structures of Tfp. We show that Tfp can form bundles, which contain up to 8–10 Tfp filaments, that act as coordinated retractable units with forces up to 10 times greater than single filament retraction forces. Furthermore, single filament retraction forces are transient, whereas bundled filaments produce retraction forces that can be sustained. Alterations of noncovalent protein–protein interactions between Tfp can inhibit both bundle formation and high-amplitude retraction forces. Retraction forces build over time through the recruitment and bundling of multiple Tfp that pull cooperatively to generate forces in the nanonewton range. We propose that Tfp retraction can be synchronized through bundling, that Tfp bundle retraction can generate forces in the nanonewton range in vivo, and that such high forces could affect infection

    Pili mediated intercellular forces shape heterogeneous bacterial microcolonies prior to multicellular differentiation

    Get PDF
    Microcolonies are aggregates of a few dozen to a few thousand cells exhibited by many bacteria. The formation of microcolonies is a crucial step towards the formation of more mature bacterial communities known as biofilms, but also marks a significant change in bacterial physiology. Within a microcolony, bacteria forgo a single cell lifestyle for a communal lifestyle hallmarked by high cell density and physical interactions between cells potentially altering their behaviour. It is thus crucial to understand how initially identical single cells start to behave differently while assembling in these tight communities. Here we show that cells in the microcolonies formed by the human pathogen Neisseria gonorrhoeae (Ng) present differential motility behaviors within an hour upon colony formation. Observation of merging microcolonies and tracking of single cells within microcolonies reveal a heterogeneous motility behavior: cells close to the surface of the microcolony exhibit a much higher motility compared to cells towards the center. Numerical simulations of a biophysical model for the microcolonies at the single cell level suggest that the emergence of differential behavior within a multicellular microcolony of otherwise identical cells is of mechanical origin. It could suggest a route toward further bacterial differentiation and ultimately mature biofilms.Comment: 29 pages, 5 figures, supplementary information attache

    Pili-Induced Clustering of N. gonorrhoeae Bacteria

    Full text link
    Type IV pili (Tfp) are prokaryotic retractable appendages known to mediate surface attachment, motility, and subsequent clustering of cells. Tfp are the main means of motility for Neisseria gonorrhoeae, the causative agent of gonorrhea. Tfp are also involved in formation of the microcolonies, which play a crucial role in the progression of the disease. While motility of individual cells is relatively well understood, little is known about the dynamics of N. gonorrhoeae aggregation. We investigate how individual N. gonorrhoeae cells, initially uniformly dispersed on flat plastic or glass surfaces, agglomerate into spherical microcolonies within hours. We quantify the clustering process by measuring the area fraction covered by the cells, number of cell aggregates, and their average size as a function of time. We observe that the microcolonies are also able to move but their mobility rapidly vanishes as the size of the colony increases. After a certain critical size they become immobile. We propose a simple theoretical model which assumes a pili-pili interaction of cells as the main clustering mechanism. Numerical simulations of the model quantitatively reproduce the experimental data on clustering and thus suggest that the agglomeration process can be entirely explained by the Tfp-mediated interactions. In agreement with this hypothesis mutants lacking pili are not able to form colonies. Moreover, cells with deficient quorum sensing mechanism show similar aggregation as the wild-type bacteria. Therefore, our results demonstrate that pili provide an essential mechanism for colony formation, while additional chemical cues, for example quorum sensing, might be of secondary importance

    Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    Full text link
    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell–cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili–pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments

    Mechanotransduction: use the force(s).

    Get PDF
    Mechanotransduction - how cells sense physical forces and translate them into biochemical and biological responses - is a vibrant and rapidly-progressing field, and is important for a broad range of biological phenomena. This forum explores the role of mechanotransduction in a variety of cellular activities and highlights intriguing questions that deserve further attention

    c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae.

    Get PDF
    Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization
    corecore